The manufacture of tea is a series of integrated steps that starts with freshly-plucked leaf and ends with what we in the trade refer to as ‘finished’, or ‘made’ tea. The six classes of tea (green, yellow, white, oolong, black, and Pu-erh) have several steps in common (such as plucking, primary sorting, finishing, etc.) as well as other aspects that are unique to only one or several particular finished tea(s). Oxidation is one of the latter, a chemical process that must occur in the manufacture of several of the classes of tea, and prevented in others. In fact, the world of tea has historically been divided into two broad categories based on whether or not a finished tea has been oxidized.

Oxidation in Tea

First, let’s define oxidation: Oxidation is a biochemical, enzymatic activity during which oxygen is absorbed by and subsequently causes changes to the host physical matter. In the case of freshly plucked leaf for tea, this is plant matter. Oxidation can be spontaneous or controlled and cause positive or negative change. A familiar example of spontaneous negative oxidation is what happens when one cuts an apple or banana and leaves the cut side open to the air. The exposed cells absorb oxygen, soften and turn brown. This is a very simple form of oxidation that most people have witnessed. Left undisturbed, the fruit may simply air-dry or it may rot, depending on the atmospheric conditions present in the room. Similarly cutting an apple into slices and drying these in a dehydrator is an example of controlled negative oxidation, occurring within the process of drying. The browning of the cut surfaces is not considered aesthetically pleasing in the marketplace, so sulfur compounds or citric acid are sometimes used to mitigate the color change, but oxidation occurs in this situation even without a visible change in color.

During the manufacture of tea, both spontaneous and controlled oxidation occurs. Spontaneous oxidation occurs during the withering phase of the manufacture of white, oolong, and black teas. An exciting phase of controlled oxidation is one of the most important components of the manufacture of both oolong and black teas. Green and yellow teas are prevented from oxidizing by meticulous steaming, drying and/or frying techniques often called ‘de-enzyming’.

Oxidation in tea manufacture officially begins during the withering stage as spontaneous oxidation, and then accelerates gradually during the subsequent steps necessary to transform fresh leaf into finished black tea. After several preliminary steps, prepped leaf is ready for the controlled oxidation process that is often incorrectly referred to as ‘fermentation’. Several chemi-
In general, theaflavins contribute to the brisk and bright taste of black tea, while the thearubigins are what provide strength (depth or body) and color. Carbon dioxide is also being driven out of the leaf, and heat is exchanged. If the temperature of the leaf is allowed to rise too high, the controlled oxidation will rage out of control; and if it falls too low, oxidation will cease.

At this point the oxidizing leaf takes on a new moniker in Indian/Western tea classification: “dhool”. Oxidation requires two to four hours and is controlled by experience, not by science. Although there may be technical markers for determining a prospective end to the process, so many variables come into play that the best method for concluding that the proper oxidation level of the leaf has been reached is to rely on the experienced nose and eye of the expert monitoring the process.

The tea master must control the thickness and raking of the leaf, which determines the exposure of the surface area of the dhool to the air; the ideal ambient temperature (85°F, or 29°C) and relative humidity (98 percent); and the ventilation (fifteen to twenty complete changes of air per hour). Also, the environment must be completely hygienic; bacteria must be prevented from ruining the dhool.

During oxidation the dhool goes through a predictable series of flavor profiles: brisk, high color, and overall strength. The tea master can direct the dhool into a particular style by adjusting the length of time allowed in oxidation in combination with regulating the temperature/humidity of the oxidation chamber. Most tea is manufactured to yield a balanced cup showing bright liquor, good intensity in the aroma, and a solid full body. When the tea master has determined that the dhool is oxidized to the desired level (‘fully oxidized’ is a degree, not an absolute) the critical phase of controlled oxidation is halted by the final process of black tea manufacture: drying.
Fermentation in Tea

Fermentation is an important component in the fabrication of Puerh and other aged teas like Liu An, Liu Pao, some oolongs, etc. Therefore, any discussion of fermentation in tea manufacture ideally focuses on—and is well illustrated by—the manufacture of Puerh. So let’s examine what fermentation is and why careful, expert fermentation is so integral to the manufacture of traditional, high-quality Puerh. While it is one of the oldest and simplest forms of tea production, the world of Puerh is complex and exacting, to the extent that volumes have been written on the subject by Asian tea experts. However, we will not examine the specific complexities of the different types of Puerh manufacture here, as this article seeks only to offer a more general description of fermentation and oxidation.

Fermentation is microbial activity involving one or more types of bacteria. By definition, fermentation occurs most readily in the absence of oxygen, though exposure to some is ideal for aging Raw (Sheng) Puerh. While an abundance of oxygen is required for most aspects of tea manufacture, exposure to oxygen during Puerh manufacture is often reduced or eliminated after the withering stage. The leaf that is being transformed into Puerh must be exposed to bacteria (or have bacteria present inherently) in order for fermentation to occur.

As is the case with the fabrication of traditional ‘hard’ cider or Roquefort cheese, the bacteria necessary for microbial activity to commence is present naturally, in the atmosphere and/or on the interior surface(s) of the chamber in which the fermentation occurs (the cider-house or cheese-curing cave). In the case of Puerh, the bacteria required to both initiate and maintain fermentation are potentially present during several aspects of its production:

1. On the surfaces of the leaf of the old-growth plants themselves in the primordial forest where the large-leaf tea trees grow—most famously in the mountains of the Xishuangbanna district of southwestern Yunnan Province, China.

2. In the controlled environment of the tea-production rooms in which the ‘Raw’ (Sheng) ‘mao cha’ is temporarily stored as it awaits compression; in the piles of mao cha during the artificial fermentation of Ripe (Shou) Puerh; and finally in the humid steam-enriched environment in which the cakes are compressed.

3. To a lesser degree, in the monitored curing rooms where Sheng Puerh cakes are stored during post-fermentation and aging.
After several preliminary steps, prepped leaf is ready for the controlled oxidation process that is often *incorrectly* referred to as ‘fermentation’.

During the fermentation phase of Puerh manufacture, several important factors must coalesce. Following the harvest of the appropriate leaf, there should be ‘wild’ bacteria available on the leaf itself; this will range from ‘very little’ to ‘an abundance’ (#1 above). Leaf destined to become Puerh (‘mao cha’: withered, fried in a ‘kill-green’ (*sa cheen*), kneaded (*ro nien*), and then partially-dried leaf) is bagged and stacked to await compression in bacteria-friendly steam; or in the case of Ripe tea (*Shou*), piled in a room whose exposure to the elements is traditionally controllable (#2 above). Unlike the shallow, porous piles of leaf created for oxidation, the mounds of *mao cha* that encourage the artificial fermentation of *Shou* Puerh are stacked thickly, densely, and with minimal surface area exposed. The critical bacterial activity being encouraged at this point requires some oxygen replenishment, but, as with a mulch pile for the vegetable garden, the *mao cha* pile is stirred infrequently, allowed to rest and generate the heat desired to encourage the multiplication of microbes and the paced decomposition of the leaf. Thermal blankets are often used to cover the surface and further encourage the process. Careful and methodical stirring periodically maintains the proper surface area exposure, temperature, and minimal oxygenation of the *mao cha* in the pile.
It is somewhat understandable to imagine the early confusion regarding withering, oxidation, and fermentation. Seeing piles of leaf on the floor being stirred and piles of leaf in troughs or on slats being turned, early tea traders may have been easily confused as to what processes were occurring during the rudimentary, artisan tea manufacture they were viewing (compounded of course by the reluctance of the Chinese to explain their ‘secrets’). However, over the last 75 years much has been written, and definition has been accomplished as to the clear differences between these processes.

It is critical that both consumers and tea vendors know the inherent differences between oxidation and fermentation. These processes must be understood and not miss-stated in the vernacular of tea identification or marketing.

In order to separate knowledgeable vendors from the run-of-the-mill, perhaps a good measure is their understanding of the manufacture of white tea, oolong tea and black tea, which depend so heavily on the processes of withering and oxidation. Using the terms ‘fermentation’ and ‘oxidation’ improperly only further the confusion of tea drinkers. Additionally, those who can correctly identify what type of Puerh is being offered for purchase, and what conditions a properly made Raw (Sheng) Puerh needs for maximum development (the best continued curing, maturing, and aging) will ensure a loyal customer base. For the tea enthusiast, knowledge is power, and as the tea world becomes more exposed, that knowledge will provide us all with more quality tea and many more pleasurable moments drinking our favorite beverage.

The Leaf

A SIMPLE BREAKDOWN OF OXIDATION IN TEA

<table>
<thead>
<tr>
<th>Tea Type</th>
<th>Oxidation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Tea</td>
<td>– no oxidation</td>
</tr>
<tr>
<td>Yellow Tea</td>
<td>– no oxidation</td>
</tr>
<tr>
<td>White Tea</td>
<td>– slight, spontaneous oxidation occurs (8-15%)</td>
</tr>
<tr>
<td>Oolong Tea</td>
<td>– partial oxidation, controlled by a tea master (range is 15 – 80%)</td>
</tr>
<tr>
<td>Black Tea</td>
<td>– fully oxidized, controlled by a tea master</td>
</tr>
<tr>
<td>Puerh</td>
<td>– always fermented, not always oxidized, 2 broad styles exist:</td>
</tr>
<tr>
<td></td>
<td>– Sheng Puerh (‘Raw’ or ‘green’ Puerh—no controlled oxidation, though minimal spontaneous oxidation may occur)</td>
</tr>
<tr>
<td></td>
<td>– Shou Puerh (‘Ripe’, or ‘black’ Puerh—controlled oxidation is integral to the ‘accelerated aging’ process)</td>
</tr>
</tbody>
</table>

[For more information on tea manufacturing and a clarification of oxidation processes in different kinds of tea, see The Story of Tea: A Cultural History and Drinking Guide by Mary Lou Heiss and Robert J Heiss, Ten Speed Press October 2007]